FixJ-regulated genes evolved through promoter duplication in Sinorhizobium meliloti.
نویسندگان
چکیده
The FixLJ two-component system of Sinorhizobium meliloti is a global regulator, turning on nitrogen-fixation genes in microaerobiosis. Up to now, nifA and fixK were the only genes known to be directly regulated by FixJ. We used a genomic SELEX approach in order to isolate new FixJ targets in the genome. This led to the identification of 22 FixJ binding sites, including the known sites in the fixK1 and fixK2 promoters. FixJ binding sites are unevenly distributed among the three replicons constituting the S. meliloti genome: a majority are carried either by pSymA or by a short chromosomal region of non-chromosomal origin. Thus FixJ binding sites appear to be preferentially associated with the pSymA replicon, which carries the fixJ gene. Functional analysis of FixJ targets led to the discovery of two new FixJ-regulated genes, smc03253 and proB2. This FixJ-dependent regulation appears to be mediated by a duplication of the whole fixK promoter region, including the beginning of the fixK gene. Similar duplications were previously reported for the nifH promoter. By systematic comparison of all promoter regions we found 17 such duplications throughout the genome, indicating that promoter duplication is a common mechanism for the evolution of regulatory pathways in S. meliloti.
منابع مشابه
Oxygen-regulated in vitro transcription of Rhizobium meliloti nifA and fixK genes.
Oxygen concentration regulates the expression of nitrogen fixation genes in the symbiotic bacterium Rhizobium meliloti. We demonstrate that two proteins, FixL and FixJ, that belong to the two-component family of regulatory proteins are necessary and sufficient for oxygen-regulated in vitro transcription of the two key regulatory genes, nifA and fixK. We show directly that FixJ is a transcriptio...
متن کاملRhizobium meliloti regulatory gene fixJ activates transcription of R. meliloti nifA and fixK genes in Escherichia coli.
When present in Escherichia coli on the multicopy expression vector pUC19, a Rhizobium meliloti regulatory gene, fixJ, belonging to a two-component regulatory system, activated the expression of two R. meliloti symbiotic genes, nifA and fixK. Primer extension by reverse transcription showed that FixJ stimulates nifA expression in E. coli by activating pnifA.
متن کاملFixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti.
Sinorhizobium meliloti exists either in a free-living state in the soil or in symbiosis within legume nodules, where the bacteria differentiate into nitrogen-fixing bacteroids. Expression of genes involved in nitrogen fixation and associated respiration is governed by two intermediate regulators, NifA and FixK, respectively, which are controlled by a two-component regulatory system FixLJ in res...
متن کاملIntramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain.
FixJ is a phosphorylatable 'response regulator' controlling the transcription of the key nitrogen fixation genes nifA and fixK in Rhizobium meliloti. Sequence and genetic analyses indicated that FixJ comprises an N-terminal phosphorylatable regulatory domain, FixJN, and a C-terminal transcriptional activator domain, FixJC. We have now overexpressed and purified the FixJC protein and show that i...
متن کاملPlant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis.
In the Medicago truncatula/Sinorhizobium meliloti symbiosis, the plant undergoes a series of developmental changes simultaneously, creating a root nodule and allowing bacterial entry and differentiation. Our studies of plant genes reveal novel transcriptional regulation during the establishment of the symbiosis and identify molecular markers that distinguish classes of plant and bacterial symbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 150 Pt 7 شماره
صفحات -
تاریخ انتشار 2004